1,630 research outputs found

    IGR J14257-6117, a magnetic accreting white dwarf with a very strong X-ray orbital modulation

    Get PDF
    IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by \XMM\ at 0.3--10 keV, complemented with 10--80 keV coverage by \Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5\,s and a longer periodic variability at 4.05\,h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ∼100%\sim100\% in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH∼1022−23 cm−2{\rm N_{H}\sim10^{22-23}\,cm^{-2}}), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate (50o ≲ i ≲ 70o50^o\,\lesssim\,i\,\lesssim\,70^o). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.Comment: Accepted for publication on MNRAS. 9 pages, 6 table, 5 figure

    Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    Full text link
    We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT_e ~ 50 keV, soft seed photons of kT_bb ~ 1 keV, and Thomson optical depth \taut ~ 1 in a slab geometry. The slab area corresponds to a black body radius of R_bb ~9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 milliseconds up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ~ -60\mu s with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of \dot{m} (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.Comment: 9 pages, 8 figures, accepted for publication in A&A. arXiv admin note: text overlap with arXiv:1012.022

    The ephemeris, orbital decay, and masses of 10 eclipsing HMXBs

    Get PDF
    We take advantage of more than 10 years of monitoring of the eclipsing HMXB systems LMC X-4, Cen X-3, 4U 1700-377, 4U 1538-522, SMC X-1, IGR J18027-2016, Vela X-1, IGR J17252-3616, XTE J1855-026, and OAO 1657-415 with the ASM on-board RXTE and ISGRI on-board INTEGRAL to update their ephemeris. These results are used to refine previous measurements of the orbital period decay of all sources (where available) and provide the first accurate values of the apsidal advance in Vela X-1 and 4U 1538-522. Updated values for the masses of the neutron stars hosted in the ten HMXBs are also provided, as well as the long-term lightcurves folded on the sources best determined orbital parameters. These lightcurves reveal complex eclipse ingresses and egresses, that are understood mostly as being due to the presence of accretion wakes. The results reported in this paper constitute a database to be used for population and evolutionary studies of HMXBs, as well as theoretical modelling of long-term accretion in wind-fed X-ray binaries.Comment: Accepted for publication on A&

    The accretion environment of Supergiant Fast X-ray Transients probed with XMM-Newton

    Get PDF
    Supergiant fast X-ray transients (SFXTs) are characterized by a remarkable variability in the X-ray domain, widely ascribed to the accretion from a clumpy stellar wind. In this paper we performed a systematic and homogeneous analysis of sufficiently bright X-ray flares from the SFXTs observed with XMM-Newton to probe spectral variations on timescales as short as a few hundred of seconds. Our ultimate goal is to investigate if SFXT flares and outbursts are triggered by the presence of clumps and eventually reveal whether strongly or mildly dense clumps are required. For all sources, we employ a technique developed by our group, making use of an adaptive rebinned hardness ratio to optimally select the time intervals for the spectral extraction. A total of twelve observations performed in the direction of five SFXTs are reported. We show that both strongly and mildly dense clumps can trigger these events. In the former case, the local absorption column density may increase by a factor of >>3, while in the latter case, the increase is only by a factor of 2-3 (or lower). Overall, there seems to be no obvious correlation between the dynamic ranges in the X-ray fluxes and absorption column densities in SFXTs, with an indication that lower densities are recorded at the highest fluxes. This can be explained by the presence of accretion inhibition mechanism(s). We propose a classification of the flares/outbursts from these sources to drive future observational investigations. We suggest that the difference between the classes of flares/outbursts is related to the fact that the mechanism(s) inhibiting accretion can be overcome more easily in some sources compared to others. We also investigate the possibility that different stellar wind structures, rather than clumps, could provide the means to temporarily overcome the inhibition of accretion in SFXTs.Comment: Accepted for publication on A&
    • …
    corecore